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ABSTRACT

A monetized flash flood casualty reduction benefit model is constructed for application to meteorological

radar networks. Geospatial regression analyses show that better radar coverage of the causative rainfall

improves flash flood warning performance. Enhanced flash flood warning performance is shown to decrease

casualty rates. Consequently, these two effects in combination allow a model to be formed that links radar

coverage to flash flood casualty rates. When this model is applied to the present-day contiguous U.S. weather

radar network, results yield a flash flood–based benefit of $316 million (M) yr21. The remaining benefit pools

are more modest ($13M yr21 for coverage improvement and $69M yr21 maximum for all areas of radar

quantitative precipitation estimation improvements), indicative of the existing weather radar network’s ef-

fectiveness in supporting the flash flood warning decision process.

1. Introduction

Weather radars are generally acknowledged to be a

valuable asset to society (e.g., Saunders et al. 2018).

They provide observational data that improve weather

forecasts and present essential situational awareness to

many users. Radars, however, are expensive to acquire,

operate, and maintain. In planning for future sensor

networks, monetization of their benefits is needed to

assess the trade-off between more expensive options

(higher performance and/or coverage) and benefits

(people’s lives and time saved).

Although meteorological radar observations help to

improve weather forecast model performance through

data assimilation (e.g., Stensrud et al. 2009), their most

direct impacts are made through the detailed and

continuously updated depiction of precipitating weather

for real-time decision-making. Sometimes these deci-

sions are life-or-death matters. In the last 30 years

(1989–2018), the top three weather-related fatality

causes in the United States were excessive heat, floods,

and tornadoes (NOAA 2019). The National Weather

Service (NWS) issues warnings for these hazards, and

weather radar data play an absolutely crucial role for

the latter two (Polger et al. 1994). Thus, we focused on

tornadoes and floods in quantifying the benefits that

meteorological radars provide to society. A benefit

model for tornadoes was published previously (Cho

and Kurdzo 2019a,b, hereinafter CK19a,b). In this pa-

per, we move on to a benefit model for heavy-rain-

induced flash floods.

For this study, we hypothesized that better weather

radar coverage improves flash flood warning perfor-

mance, which, in turn, reduces casualties. The second

half of this causality chain is intuitive. Flash flood

warnings can provide the impacted populace time to

take appropriate action to help prevent loss of life and

potentially reduce property damage (e.g., Sene 2013).

Empirical evidence exists that such warnings do de-

crease flash flood fatalities (e.g., DeKay andMcClelland

1993). The first half of the proposed causality chain,

however, requires more explanation on how flash flood

warning decisions are made.

In the United States, operational flash flood warning

decisions rely primarily on the concept of flash flood

guidance (FFG; Ostrowski et al. 2003). Based on basin

hydrological models with soil moisture and streamflow

as initial conditions, FFG outputs rainfall accumulation

needed in 1-, 3-, 6-, or 12-h periods to cause flash flood

conditions on a typical small stream or urban area in

the region of interest. There are different types of

FFG models used at different weather forecast offices

(WFOs)—lumped FFG, gridded FFG, distributed FFG,

and flash flood potential index. However, regardless of

type, the basic idea is that the forecaster looks for ac-
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to exceed the FFG rain accumulation threshold in a

given catchment basin when issuing a flash flood warn-

ing; decision support tools such as the flash flood mon-

itoring and prediction system aid the forecaster in this

process (Clark et al. 2014).

By definition, flash floods occur within 6 h of the

causative event (NWS 2019). Thus, when the cause is

heavy rain, in order for the WFO to issue a timely flash

flood warning, forecasters mostly utilize multisensor

precipitation estimator (MPE) products for comparison

with FFG thresholds. (Waiting for flow-level measure-

ments from stream gauges delays the decision, and, in

any case, many potential flash flood areas are in un-

gauged headwaters.) MPE ingests radar, rain gauge,

and geostationary satellite data; rain gauge data are

used to help correct biases in the radar and satellite es-

timates. The dominant MPE contributor is radar QPE,

while satellite QPE is mainly used to fill gaps in radar

coverage (Kitzmiller et al. 2013). Also, with finer-spatial-

resolution hydrological models becoming feasible for

operational use, the value of highly resolved rainfall es-

timates from radars is expected to rise in the future

(Gourley et al. 2014). Forecasters have started to consult

short-term rainfall nowcasts as well (Ahnert et al. 2012).

The flash flood warning decision process, therefore,

depends on the accuracy of the FFG andMPE products.

FFG threshold errors are dependent on FFG type and

are specific to each catchment basin. There are various

sources of MPE errors, including those for radar QPE

such as choice of algorithm, radar calibration, and rain

gauge density (e.g., Cecinati et al. 2017). The situation is

further complicated by the fact that the WFOs do not

utilize a uniform set of data products and decision sup-

port tools. To analyze the impacts of input data errors

on flash flood warning performance would require an

in-depth case study at a particular WFO using a detailed

hydrological model of a catchment basin—this is not

conducive to a national-scale statistical analysis.

In this study, we took a simple approach. Since poor

radar coverage is a significant source of radar QPE error

(Rogalus and Ogden 2013; Kurdzo et al. 2018), we hy-

pothesized that flash flood warning performance would

depend on radar coverage, even without taking into

account the other error sources in the warning decision

process—this is proved true in sections 2d and 2e. By

linking radar coverage directly to warning performance,

we bypassed the very complex problem of characterizing

MPE and FFG product errors, considerably simplifying

the analysis. We believe a clear statistical signal was

extractable due to the large number of cases nationwide

used in the analysis.

To summarize briefly, we propose an original geospatial

model for monetizing flash flood casualty reduction

benefits of a meteorological radar network. This analysis,

along with the earlier tornado benefit effort (CK19a,b),

was conducted for the National Oceanic and Atmospheric

Administration (NOAA) as part of a larger program that

is studying future radar systems beyond the Weather

Surveillance Radar-1988 Doppler (WSR-88D). Benefits

must be weighed carefully against costs in considering

advanced technologies such as active phased array radars

(Weber et al. 2007; Zrnić et al. 2007) and/or a denser

network of smaller radars (McLaughlin et al. 2009).

In addressing the complex nature of the problem, we

employed only the bare essentials in objectively mod-

eling the radar effects. In contrast to detailed hydro-

logical simulation or survey-based case studies, we relied

on the power of large datasets to yield statistically

meaningful results with simple models. We made con-

servative choiceswhen therewas uncertainty. Statistically

insignificant variables were disregarded. Our geographic

scope was limited to the contiguous United States

(CONUS), as that is where most of the relevant data

were available and wide variation in radar coverage exists.

2. Model development

Following the successful radar network benefit mod-

eling approach of CK19a,b for tornadoes, we sought to

establish statistical relationships using historical flash

flood data 1) between radar coverage metrics and flash

flood warning performance and 2) between flash flood

warning performance and casualty rate. With these two

links established, the flash flood casualty rate could be

computed geospatially for any given weather radar

network. With casualty monetized, the difference be-

tween a baseline case (e.g., the current WSR-88D net-

work) and a hypothetical radar network would yield the

benefit (or loss). The methods used throughout follow

closely those used by CK19a,b.

To provide a visual aid for understanding both the

model development process and the model usage, Fig. 1

gives high-level block diagram views of these proce-

dures. The reader is encouraged to refer back to this

figure while reading the detailed explanations in the

following sections.

a. Analysis data source and time period

We needed to use as many data as possible to achieve

statistically significant results. At the same time, how-

ever, we had to maintain uniform conditions for un-

biased regression results.Our primary sourcewas theU.S.

Flash FloodObservation Database (Gourley et al. 2013)

compiled by the Flooded Locations and Simulated

Hydrographs (FLASH) project (Gourley et al. 2017).

Although the earliest-processed NWS storm reports in
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the FLASH database are from 2006, the official transi-

tion from county-based flash flood reporting (a single

point indicating an event somewhere in the county) to

polygon-based reporting did not occur until 1 October

2007. Thus, we limited our analysis period to begin on

this transition date (the transition from county-based to

storm-based warnings also took place on the same day).

Furthermore, because the FLASH storm report data-

base only extended to July 2013, we supplemented those

data with storm reports pulled from NOAA’s National

Centers for Environmental Information (https://www.

ncdc.noaa.gov/stormevents/) up to 31 December 2018,

which we then processed to match the content and for-

mat of the FLASH data. This yielded about 12 years of

flash flood data to analyze. Only reports with an asso-

ciated cause of ‘‘heavy rain’’ were retained.

Storm warning data for the matching period were

obtained from the Iowa Environmental Mesonet NWS

Watch/Warnings archive (https://mesonet.agron.iastate.

edu/request/gis/watchwarn.phtml). If any part of the

flash flood polygon was inside the warning polygon and

if any segment of the flash flood time span overlapped

the warning valid interval, then the warning was con-

sidered a hit; otherwise, it was labeled a false alarm. The

lead time for a hit was computed as the beginning time of

the flash flood minus the initial warning issuance time.

For the remainder of the paper, we will refer to the

fraction of flash floods with warning interchangeably

with probability of detection (POD) for brevity.

b. Radar coverage metrics

The radar observational characteristics important

for QPE accuracy are vertical coverage, horizontal

resolution, and availability of dual-polarization prod-

ucts (Kurdzo et al. 2019, manuscript submitted to

J. Appl. Meteor. Climatol.). The data update rate might

FIG. 1. Development and usage block diagrams of the radar network flash flood casualty cost model. Input data are indicated by gray

rectangles, intermediate data products are shown by green rectangles, and final monetized cost output is given by a blue rectangle.

Computational model units are shown as orange ovals.
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also have an impact on flash flood warning perfor-

mance. An ongoing study aims to answer this question,

and early results show that QPE from faster radar scans

can improve agreement between measured and simu-

lated stream gauge levels during flash floods (Wen

et al. 2018).

With vertical coverage, the most crucial aspect is the

radar antenna beam’s minimum height above ground

level (AGL), since the aim of QPE is to match the

rainfall measurement at the surface. However, informa-

tion aloft is also useful to forecasters for determining lo-

cation of the radar bright band (Austin and Bemis 1950),

regions of mixed-phase precipitation (Balakrishnan and

Zrnić 1990), and for ingest to QPE correction algorithms

such as vertical profiles of reflectivity (VPR; Kirstetter

et al. 2010). Additionally, future uses such as quasi-

vertical profiles (QVP; Ryzhkov et al. 2016) may be of

use to forecasters for determining rainfall rates. Thus, we

decided to employ the same coverage metric, fraction of

vertical volume observed (FVO) between 0 and 20 kft

AGL (1 kft 5 304.8m), as we did for the CK19a,b tor-

nado study. The rationale for picking 20 kft as the FVO

ceiling is that the current WSR-88D network (on which

we base the statistical analysis) has essentially perfect

coverage above 20 kft (Fig. 2); therefore, no information

content is added by moving the ceiling higher, whereas

moving it lower progressively eliminates actual defi-

ciencies in coverage from consideration. FVO includes

the effects of Earth’s curvature, terrain blockage, and the

radar’s overhead ‘‘cone of silence’’ resulting from its

limited elevation scanning angle, so it is a convenient and

effective metric.

Details of the beam blockage calculations are given by

Cho (2015). The minimum and maximum elevation

coverage angles were assumed to be 08 and 208, roughly
corresponding to the bottom and top sides of the main

antenna lobe at the WSR-88D scan angle limits of 0.58
and 19.58. These limits are approximations, because the

maximum elevation angles vary for different volume

coverage patterns (VCPs) and the minimum angle has

recently been lowered slightly at a few high-altitude sites

(Steadman and Brown 2007).

Cross-radial horizontal resolution (CHR), which is

approximately range times azimuthal angular resolu-

tion, is also relevant. (Along-range horizontal resolution

is constant everywhere for monostatic radars, so it is not

of value here.) Azimuthal angular resolution is depen-

dent on dwell length and antenna beamwidth (Zrnić and

Doviak 1976). The WSR-88D beamwidth is just under

18. Presently, it has a ‘‘superresolution’’ mode that out-

puts data every 0.58; however, the effective angular

resolution is about 18 based on the antenna beamwidth

FIG. 2. WSR-88D coverage at the indicated height slices.
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and time series data window (Torres and Curtis 2006).

Taking all this into account, we took the angular res-

olution to be 18 for the analysis period. Consequently,

for the current WSR-88D, the resulting CHR is func-

tionally the same as the distance from the radar. CHR

could become a more meaningful performance metric,

since future radar networks may have varying angu-

lar resolutions—for example, with a mix of powerful

narrow-beam radars augmented by gap-filling broad-

beam systems (Chandrasekar et al. 2012), or with the

angle-dependent resolution of fixed planar phased ar-

rays (Weber et al. 2017).

During the analysis period (October 2007 toDecember

2018), the WSR-88D CONUS network underwent two

relevant changes. First, a new radar was added at Langley

Hill, Washington, in September 2011. Second, the net-

work was upgraded from single polarization to dual po-

larization. To address the first change, we produced two

sets of FVO and CHRmaps corresponding to before and

after the Langley Hill deployment. For the second net-

work change, we conducted our analysis over the entire

database time span as well as the single-polarization pe-

riod and the post-dual-polarization upgrade period. To

ensure that there would be no cross contamination

between the two polarization eras, the end of the

single-polarization period was marked by the first op-

erational CONUS deployment of dual polarization

(8 March 2011), and the start of the dual-polarization

period was marked by the completion of CONUS de-

ployment (16 May 2013).

Although we included terminal Doppler weather ra-

dars (TDWRs) in our earlier analysis for tornadoes,

because we determined that forecasters utilize TDWR

data for tornado warning decisions, we did not include

them for flash floods, since TDWRs are not used for

QPE purposes.

c. Mapping flash flood event to corresponding basin

Flooding location is different from the place where

the causative rain falls. To study the relationship be-

tween the quality of radar coverage (which affects

QPE accuracy) and flash flood warning performance, we

had to match each flood event to the appropriate up-

stream catchment basin. To do this we utilized the

U.S. Geological Survey (USGS) National Hydrography

Dataset Plus (NHDPlus; https://water.usgs.gov/GIS/

metadata/usgswrd/XML/streamgagebasins.xml). This

database contains the location of 19 031 stream gauges

with corresponding catchment basin boundaries.

For each flood event, we searched for a stream gauge

located inside the event polygon and computed the

mean radar coverage metric over the matching source

basin (Fig. 3). If more than one stream gauge was found

inside the event polygon, then the radar coverage metric

means were computed over all corresponding basins. If

no stream gauge was situated in the polygon, then we

looked for the nearest stream gauge; if the distance to

the mean polygon latitude–longitude coordinate was

less than 10km, the stream gauge match was accepted.

(This means the matched stream gauge was even closer

to the polygon border.) With this procedure, 24 236 flash

flood events were matched to source basins over the

analysis period. All the analyses conducted on flash

floods described in the rest of this paper were based on

this set of events.

d. Detection probability dependence on radar
coverage

Flash flood warning POD statistics were computed

versus the basin-averaged radar coverage parameters

(Fig. 4, top row). For FVO, the data were binned using

cumulative distribution percentage intervals of [0, 1],

(1, 5], (5, 25], (25, 50], (50, 75], and (75, 100]. For CHR,

the data were binned using cumulative distribution

percentage intervals of [0, 25], (25, 50], (50, 75], (75, 95],

(95, 99], and (99, 100]. The asymmetric interval dis-

tributions help to draw out the steep change regimes

where data were sparse. Note that the abscissa values

plotted do not correspond to the center of the data

bins—instead, they are the actual means of the binned

FVO or CHR data. The vertical and horizontal error

bars denote the 95% confidence intervals along both

dimensions (see CK19a,b for further details).

Flash flood POD unambiguously increases with FVO

and decreases with CHR. This is a very important re-

sult because it connects better radar coverage to flash

flood warning performance improvement and allows

a continuous functional mapping between the two.

FIG. 3. Illustration of how a flood event is matched to the

source basin.
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(This result is also consistent with a prior study that

showed a positive dependence of POD on WSR-88D

low-level coverage over NWS WFO areas; Meléndez
et al. 2018.) We modeled these relationships by two-

segment linear fits with input uncertainty in both di-

mensions using the ‘‘fitexy’’ function from Numerical

Recipes (Press et al. 1992). Fitting results are given in

Table 1, where a is the y intercept, b is the slope,sa andsb

are the standard deviations of a and b, x2 is the fitted chi-

squared value, and Q is the goodness-of-fit probability.

As can be seen in the POD-versus-FVO plot of Fig. 4,

there is a discernible change in slope between FVO 5
0.7 and 0.8. (The slope change is more gradual in the

FAR-vs-FVO plot; FAR indicates false alarm ratio) If

we assume that all of the observation loss occurs at the

bottom of the volume (which is true except for the small

fraction attributable to the radar cone of silence at the

top of the volume), FVO 5 (20 kft 2 minimum obser-

vation height)/20 kft. Note, then, that FVOof 0.7 and 0.8

approximately correspond to floors of 6000 and 4000 ft

AGL. Thus, if one had to pick one altitude as the

‘‘critical floor’’ for radar coverage with respect to flash

flood warning performance, it would be ;5000 ft AGL;

the top-left plot in Fig. 2 corresponds to this height.

Flash flood detection can be defined based on only

positive lead times or all lead times (including zero

and negative lead times). We decided on the lat-

ter because the casualty regression statistics were

better with all lead times included (section 2h). For

a measure of model sensitivity, we also did the anal-

ysis with detections defined with only positive lead

times. As expected, the primary impact of exclud-

ing zero and negative lead times was to reduce the

POD values; however, POD still increased with FVO,

POD decreased with CHR, and the fits remained

significant.

FIG. 4. Plots of (top left) flash flood POD vs FVO, (top right) flash flood POD vs CHR, (bottom left) flash flood

FAR vs FVO, and (bottom right) flash flood FAR vs CHR. Solid red lines are linear fits to the data.

TABLE 1. POD vs radar coverage parameters (FOV and CHR):

linear fit results.

FVO CHR

Segment Low FVO High FVO Low CHR High CHR

a 0.11 0.68 0.88 1.1

b 0.89 0.20 21.4 3 1025 21.2 3 1024

sa 0.12 0.074 0.011 0.075

sb 0.15 0.084 8.1 3 1026 3.2 3 1025

x2 0.037 0.13 1.2 0.89

Q 0.85 0.94 0.54 0.35
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We also tried combining the FVO and CHR rela-

tionships in the flash flood POD model via weighted

additions of the two relationships. The mean-square

sums of the difference between data and model were

minimized to obtain the optimal weighting. The error

was minimized with a 0.86 weight on the FVO rela-

tionship and a 0.14 weight on the CHR relationship.

e. False alarm ratio dependence on radar coverage

To compute flash flood warning FAR statistics versus

the radar coverage metrics, we matched each warning to

the relevant catchment basin(s) following the method

outlined in section 2c for flood events. In this case, how-

ever, the event polygon depicted in Fig. 3 is replaced by

the warning polygon. With this procedure, 32 438 flash

flood warnings were matched to source basins over the

analysis period. (All of the analyses conducted on flash

floods described in the rest of this paper were based

on this set of warnings.) The radar coverage parameter

values were then averaged over the corresponding basin

boundaries.

The resulting plots of FAR versus basin-averaged

radar coverage parameters are shown in the bottom row

of Fig. 4. For FVO, the data were binned using cumu-

lative distribution percentage intervals of [0, 1], (1, 10],

(10, 25], (25, 50], (50, 75], and (75, 100]. For CHR, the

data were binned using cumulative distribution per-

centage intervals of [0, 25], (25, 50], (50, 75], (75, 90],

(90, 99], and (99, 100].

FAR clearly decreases with FVO and increases with

CHR. This result is consistent with an earlier analy-

sis that showed a negative dependence of FAR on

WSR-88D low-level coverage over NWS WFO areas

(Meléndez et al. 2018). Unfortunately, however, be-

cause the casualty regression analysis did not yield a

statistically meaningful relationship between historical

FAR and casualty rate (section 2h), we were not able to

exploit this clear dependency of flash flood FAR on

radar coverage for our benefit model. (Hence, linear

fits to the bottom-row plots in Fig. 4 are not given.)

Note that we did not use a combined warning per-

formance metric such as the critical success index

(CSI) for a couple of reasons. First, POD could be

applied to the casualty regression model (section 2h)

on a per-event basis via the binary warning presence

variable, whereas FAR and CSI could not. Second,

for a geospatial mapping of historical warning perfor-

mance (for use by the regression model), the mismatch

in spatial boundaries for computing POD (event poly-

gons) and FAR (warning polygons) presented a prob-

lem in combining them for CSI; hence, only FAR was

tried for that purpose.

As for warning lead time, our analysis did show a

positive correlation between increased radar cover-

age and lead time. However, because flash flood lead

time did not correlate negatively with casualty rate

(section 2h), we could not include it as part of our

benefit model.

f. Impact of dual-polarization upgrade

To investigate the impact of the WSR-88D dual-

polarization upgrade on flash flood warning perfor-

mance, we computed the mean CONUS POD and

FAR over two periods: 1) from 1 October 2007 to

7 March 2011 and 2) from 16May 2013 to 31 December

2018. As explained in section 2b, these dates were

chosen based on the first operational CONUS dual-

polarization deployment (8 March 2011) and the com-

pletion of the CONUS upgrade deployment (16 May

2013). Table 2 lists the corresponding POD and FAR

values for these periods as well as for the entire analysis

period. The plus/minus values indicate the 95% confi-

dence intervals for the means.

The mean flash flood warning values did not yield

statistically meaningful differences between the single-

polarization and dual-polarization eras. This stands in

contrast to case studies that showed dramatic improve-

ment in flash flood warning performance when the

nation’s meteorological radar network was upgraded to

the WSR-88D from the WSR-57 and WSR-74 (Polger

et al. 1994). One of the challenges with QPE in the dual-

polarization era is the ongoing difficulty with calibration

of differential reflectivity ZDR, leading to difficulties

obtaining consistent QPE results for use in the flash

flood warning process (Ryzhkov et al. 2005). As a result,

the NWS has approved the transition to the ‘‘rainfall

accumulationmethod using specific attenuation’’ [R(A)]

algorithm (Snow 2017). TheR(A) technique uses a slope

TABLE 2. Mean CONUS flash flood POD and FAR.

Period 1 Oct 2007–31 Dec 2018 1 Oct 2007–7 Mar 2011 16 May 2013–31 Dec 2018

POD (all lead times) 0.853 6 0.005 0.857 6 0.008 0.853 6 0.006

POD (positive lead times only) 0.774 6 0.005 0.776 6 0.010 0.775 6 0.007

No. of points averaged (POD) 24 236 7097 13 408

FAR 0.452 6 0.005 0.434 6 0.010 0.453 6 0.007

No. of points averaged (FAR) 32 438 9729 17 518
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of the ZDR/Z (horizontal reflectivity factor), meaning

that constant offsets in ZDR across the tilt/volume the-

oretically will not cause as much of an error in QPE

(Cocks et al. 2018; Ryzhkov and Zrnić 2019). Initial

results of the R(A) algorithm have shown promise rel-

ative to theR(Z,ZDR) method when polarimetric bias is

introduced (Kurdzo et al. 2019, manuscript submitted to

J. Appl. Meteor. Climatol.). It is possible that the even-

tual use of R(A) will impact our results in the future.

The good news is that the statistics of flash flood

warning versus radar coverage as exemplified by the

Fig. 4 plots were very stable over the single- and dual-

polarization periods. This was another confirmation that

these relationships are meaningful and robust, and it

further justified their use in the benefit estimation model.

g. Non–flash flood warnings versus radar coverage

Although this study focused on flash floods (and they

account for the majority of flood-related fatalities;

Ashley and Ashley 2008), we took the opportunity to

investigate the relationship between radar coverage

and non–flash flood warning performance. Using the

same procedure employed for the flash flood analysis

yielded no discernible coherent relationship between

POD and FVO or CHR, and between FAR and FVO

or CHR. These null results are perhaps not surprising,

given that warning decisions for longer-term events

must be based primarily on model forecast data, and

the importance of QPE to the flood forecasting process

diminishes with increasing time horizon as stream

gauge data and quantitative precipitation forecast (QPF)

become more relevant (e.g., Hudlow et al. 1984). These

results preclude the addition of non–flash floods to our

radar network benefit model.

h. Casualty dependence on flash flood warning

With the causal link between radar coverage and flash

flood warning performance clearly established, we pro-

ceed to discuss the connection between flash flood

warnings and casualty rates. Among the factors that are

thought to affect flash flood casualty rate are population,

time of day, building type, catchment basin size, water

flow velocity and depth, rate of water-level rise, and

warning lead time, and they appear to interact in various

ways to impact casualty rates. For example, while most

casualty events occur around headwater catchments in

rural areas (because flash floods are generated by the

rapid response time of small basins to heavy rainfall),

when they do occur downstream in urban areas, the

casualty rates are higher (�Spitalar et al. 2014). The same

article reports that while flash flood occurrence in the

United States peaks around 1700 local time (LT), the

per-event casualty rate reaches a maximum at 2100 LT,

hinting at the importance of human factors such as in-

ability to see in the dark for those outside. We refer

the reader to informative past reviews on this topic

(e.g., Jonkman et al. 2008; Smith andRahman 2016). For

the purposes of developing a radar network benefit

model, only variables that could be geospatially char-

acterized were considered. Temporal predictors like

season and time of day were excluded, since they were

not germane to our time-independent benefit model.

However, in the future, the model could be extended to

capture temporal effects.

The flash flood casualty variance was more than

20 times as large as the mean statistics over our analysis

period. Thus, instead of a Poisson distribution that is

often used for counting statistics, we adopted a negative

binomial distribution model for the casualty count,

C;NegBin(m, u), (1)

for our casualty regression analysis, where m is the dis-

tribution mean and u is the dispersion parameter. The

regression model then was a linear combination of can-

didate predictor variables set equal to lnm This is the

same scheme thatwe used for theCK19a,b tornado study.

At this point, casualties were not divided between

fatalities and injuries. Since the vast number of events

have zero (no casualty) outcomes, increasing the num-

ber of nonzero outcome cases by aggregating fatalities

and injuries improves statistical robustness. While the

database includes direct and indirect casualties sepa-

rately, we only used direct casualties in our analysis

because we sought the tightest causal bond between

flash floods and their effects on people. In the moneti-

zation stage (section 2i), we parsed the model results

into fatalities and two types of injuries on the basis of

historical averages.

The predictor variables that we tried in the regression

analysis were 1) logarithm of the population, 2) fraction

of population in mobile housing, 3) historical flash flood

warning FAR, 4) catchment basin size (as a proxy for

basin response time), 5) flood ‘‘flashiness,’’ 6) flash flood

warning presence (binary—0 or 1), and 7) flash flood

warning lead time. Variables 1, 2, and 3 were averaged

over the flood event polygon. The predictor variables

were tested both individually and in combination to

elucidate any cross-correlation effects. We also tried

FVO and CHR (averaged over the source basins) as

casualty predictors to see if a direct link could be es-

tablished between radar coverage and casualty rate, but

there was no meaningful statistical relationship, consis-

tent with the findings of Meléndez et al. (2018).
We acquired population data from the Center for

International Earth Science Information Network
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(CIESIN 2017) with latitude–longitude spacing that

matched our 30-arc-s model grid resolution. Measured

population for 2005, 2010, and 2015 were available, as

well as projected population for 2020; linear interpo-

lation yielded corresponding data for the other years.

In a nod to statistics that showed most flash flood fatal-

ities occurring while people were away from their resi-

dences (predominantly while driving, but also during

hiking, camping, etc.; Terti et al. 2017), we set a floor of 1

in the population field everywhere. Also, in cases where

the event casualty count exceeded the population in the

event polygon, the population was set to the casualty

count for logical consistency. Otherwise, we relied on a

general spatial correlation between residential pop-

ulation and transient mobile population.

Flood flashiness, defined as the peak flow above flood

stage divided by the product of basin area and time from

flood stage exceedance to peak flow (Saharia et al. 2017),

was considered because it seemed to hold promise as a

predictor of flash flood casualty rate. Since the NWS

storm events database did not contain quantitative data

on water flow or depth, we computed flashiness from

USGS streamflow measurements (2016V1; https://blog.

nssl.noaa.gov/flash/database/database-2016v1/) archived

under the FLASH database (Gourley et al. 2013).

However, in comparing the NWS flash flood events

with the USGS streamflow measurements by time and

location, only a small fraction of the former were found to

match with the latter. Therefore, any casualty regression

results that included flashiness as a predictor variable

were handicapped by the reduction in input data points.

The fraction of the population living in mobile hous-

ing was an effective predictor variable for tornado

casualties (CK19a,b). Intuitively, one might expect the

heightened vulnerability ofmobile housing to bewashed

away by flood waters to be a factor in casualty rate. In

fact, about a third of building-related flash flood casu-

alties was estimated to have occurred in mobile homes

(Terti et al. 2017). Mobile housing and trailer parks are

also often located near rivers (Marrero 1979), while a

proposed flash flood severity index codifies the sweeping

away of mobile homes as a category-defining charac-

teristic (Schroeder et al. 2016). The gridded fraction of

the population in mobile housing were computed from

data obtained from the American Community Survey

database for 2015 (U.S. Census Bureau 2016) and the

Decennial Census for 2000 (Manson et al. 2018). We

combined the population in the ‘‘mobile home’’ and

‘‘boat, RV, van, etc.’’ categories to arrive at the mobile

housing population, which was normalized by the total

population in each census block group to yield the

fraction of population in mobile housing. We sampled

and mapped this data to our 30-arc-s latitude–longitude

model grid. See CK19a,b for further details. In the re-

gression analysis, linearly interpolated maps (between

2000 and 2015) were used for 2007–14, and the 2015map

(Fig. 5) was used for 2015–18.

For the negative binomial regression analysis, we

utilized the ‘‘glm.nb’’ function from the open software

package R (https://www.R-project.org/). An exhaus-

tive search of predictor combinations yielded a clear

winner that was based on statistical reliability. The

best regression fit statistics were obtained by keeping

only population P, fraction of population in mobile

housing M, and warning presence W in the statisti-

cal model,

FIG. 5. Fraction of population living in mobile housing as derived from the 2015 American

Community Survey data given at the census block group level.
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lnm5a lnP1bM1 gW1 k , (2)

where k is the intercept constant and a, b, and g are the

regression coefficients. For the definition of warning

presence, we tried including all lead times versus only

positive lead times, and the better result was obtained by

including all lead times. The fit results are given in

Table 3. The probability of the ‘‘null hypothesis being

true’’ for each predictor was less than 0.0003, which is

much smaller than the typically used threshold of 0.05.

In addition, comparison of the casualty regression rela-

tion with and without each predictor via degree-of-

freedom chi-squared tests showed that each variable

was a statistically significant predictor.

Applying the same flash flood events input data to

Eq. (2) with the estimated coefficients gave a casualty

count of 681, which is reasonably close to the actual

count of 631. The presence of a flash flood warning re-

duces casualty rate by 44% according to this model.

i. Monetizing casualties

The value of a statistical life (VSL) is commonly used

to monetize casualties in benefit analyses. As we did

previously (CK19a,b), we followed the guidance of the

U.S. Department of Transportation (DOT; Moran and

Monje 2016), which established a VSL of $9.6 million

(M) in 2015 dollars. To update the value to 2019 dollars,

we used the DOT’s equation,

VSL
T
5VSL

0

CPI
T

CPI
0

�
MUWE

T

MUWE
0

�q

, (3)

where CPI is the consumer price index, MUWE is the

median usual weekly earnings, q is income elasticity,

and the subscripts T and 0 signify updated base year

and original base year. We got CPIT/CPI0 5 1.08

(https://www.bls.gov/data/inflation_calculator.htm) and

MUWET/MUWE0 5 1.12 (https://www.bls.gov/cps/

cpswktabs.htm) from the U.S. Bureau of Labor Statistics

database, for a baseline of January 2015 and updated time

of January 2019. Taking the DOT’s recommended value

of q 5 1 yielded a 2019 VSL of $11.6M.

Wedid not distinguish between fatalities and injuries in

our casualty regression model as explained in section 2h.

We used the actual mean ratio calculated over the

analysis period to parse the model output into the two

casualty types, which yielded 61% fatalities and 39%

injuries.

Injuries were monetized as fractions of VSL, relying

on a Federal Emergency Management Administration

(FEMA) formulation (FEMA 2009) specifying injuries

requiring hospitalization as level 4 and injuries resulting

in treatment and release as level 2. With the DOT setting

level-4 injury cost at 0.2663 VSL and level-2 injury cost

at 0.0473VSL (Moran and Monje 2016), these costs are

$3.09M and $0.545M, respectively, in 2019 dollars.

Because the flood event database does not categorize

injuries by severity, we scoured the internet for papers

and news reports that contained flash flood injury out-

come information.We found usable reports on 12 events

between 1956 and 2018 with 3336 total injuries, with the

count being dominated by the 9 June 1972 Rapid City,

South Dakota, event. To avoid being biased by one

event, we computed the ratio of injury types for each

event and then took the mean of the ratios. The result

was 43% for injuries requiring hospitalization versus

57% for injuries that were treated and released.

j. CONUS grid computation

All of the individual model components can now be

integrated to generate mean annual CONUS flash flood

casualty cost. The modeled casualty rate (per year, per

grid cell) is given by

RF,H,R
ij 5YF,H,R[r

ij
(1)B

ij
1 r

ij
(0)(12B

ij
)]O

ij
, (4)

where B is the probability of warning per flash flood

(POD), O is the flash flood occurrence rate, i and j are

the latitude and longitude grid indices, and the super-

scripts indicate fatal (F), injured—hospitalized (H), and

injured—treated and released (R). The gridcell size is

1/1208 3 1/1208. The casualty-type fractions are broken

down as

YF 5 f , (5)

YH 5 (12 f )h, and (6)

YR 5 (12 f )(12 h) , (7)

where f is the fatality fraction and h is the fraction of

injured that are hospitalized. From Eq. (2) we get the

casualty rate per flash flood,

r
ij
(W) 5 exp[a ln(P

ij
)1bM

ij
1 gW1 k] , (8)

with (W5 1) and without (W5 0) a flash flood warning.

To generate the flash flood POD map, we applied the

Table 1 fitted parameters to the radar network FVO and

TABLE 3. Flash flood casualty model regression results.

Parameter Estimate Std error z Pr (.jzj)
a 0.166 0.020 8.13 4 3 10216

b 2.20 0.435 5.05 4 3 1027

g 20.572 0.160 23.59 3 3 1024

k 24.58 0.206 222.2 ,2 3 10216

u 0.105 7.16 3 1024 — —
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CHR maps and summed them with weights given in

section 2d. However, a geospatial mapping was needed

because Eq. (4) is computed over the grid cells of flash

flood occurrence, not radar observation of the source

rainfall. Thus, we mapped every CONUS grid cell to the

nearest USGS NHDPlus stream gauge (Fig. 6), which

wasmapped to the corresponding source basin grid cells.

The modeled flash flood POD computed based on mean

radar FVO and CHR over the source basins were then

able to be mapped onto the flash flood occurrence areas.

The modeled POD values were computed from 0.86 3
POD(FVO) 1 0.14 3 POD(CHR). POD(FVO) and

POD(CHR) were calculated using the piecewise-linear

relationships given by the a (y intercept) and b (slope)

coefficients in Table 1 (and expressed by the red lines in

Fig. 4). The resulting flash flood POD map for the cur-

rent WSR-88D network is shown in Fig. 7.

The mean annual flash flood occurrence rate was

computed for each CONUS grid cell using the NWS

storm database over the period 2006–18. Earlier NWS

data were not used because the cause of flooding was not

recorded. To obtain better coverage and statistics (since

flash floods occur relatively rarely and the NWS data-

base is not a comprehensive source), we also computed

occurrence rate with the USGS streamflow measure-

ments that date back to 1936, based on exceedance of

the action stage. Since these observations came from

single point locations, we counted the floods as having

occurred in the four closest grid cells. In joining the re-

sults from the two disparate datasets, we took the greater

FIG. 6. Areas associated with nearest USGS NHDPlus stream gauge colored according to the

logarithm of the number of grid points enclosed.

FIG. 7. Modeled flash flood warning probability for the current WSR-88D network.
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occurrence rate value in each grid cell instead of com-

bining them in order to avoid double counting. For vi-

sualization purposes, Fig. 8 shows the mean annual

CONUSflash flood occurrence rate densitymapped from

the event locations to the corresponding source basins.

Without this mapping, the occurrence rates at the actual

locations are too small to be discernible at the national

level—they appear as sparse dots on the CONUS map.

We arrived at the predicted CONUS flash flood ca-

sualty rate parsed by casualty type by summing Eq. (4)

over all grid indices. The total estimated annual CONUS

flash flood casualty cost was obtained by multiplying the

individual casualty rates with the corresponding casualty

type costs and summing.

3. Example results

To estimate the value provided by the current radar

network, as well as the remaining benefit pool, we

computed modeled flash flood casualty costs for three

basic scenarios: the currentWSR-88D network, no radar

coverage, and perfect WSR-88D-like coverage. No ra-

dar coverage was simulated by setting FVO 5 0 and

CHR5 ‘ everywhere. Perfect WSR-88D-like coverage

was simulated by setting FVO 5 1 and CHR 5 0

everywhere.

Table 4 lists the flash flood casualty estimates for all

scenarios and the actual average annual casualty rates.

The agreement between the baseline model estimates

and the actual casualty rates is very good, especially with

the median actual rates. Table 5 gives the corresponding

flash flood casualty costs in 2019 dollars.

Differences from the current baseline are provided in

the ‘‘delta baseline’’ columns of Tables 4 and 5. This

shows that today’s WSR-88D network provides over

$300M in flash flood benefits annually relative to a

CONUSwithout weather radars. Perfect radar coverage

of the CONUS yields a benefit of only $13Myr21 over

the baseline. The remaining benefit pool with respect to

improved coverage is, therefore, very modest for flash

FIG. 8.Mean annual flash flood occurrence rate density with the ratesmapped from the event

locations to the corresponding source basins, computed on the basis of combined USGS and

NWS flash flood data from 1936 to 2018.

TABLE 4. Annual CONUS flash flood casualty estimates. Actual average injured counts are totals and are not broken out by injury type.

Scenario Fatal Injured (hospitalized) Injured (treated and released) Total Delta baseline

WSR-88D 52.6 14.5 19.2 86.3 —

No radar coverage 77.6 21.4 28.4 127.4 41.1

Perfect coverage 51.5 14.2 18.9 84.6 21.7

0% warned 83.6 23.1 30.6 137.2 50.9

100% warned 47.2 13.0 17.3 77.4 28.9

Actual mean (2007–18) 63 6 10 41 6 15 104 6 20 —

Actual median (2007–18) 59 6 7 23 6 8 86 6 13 —
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flood casualty reduction, especially when compared with

the tornado case, which has an order-of-magnitude

larger benefit pool (CK19a). Evidently, for the pur-

poses of QPE to support flash flood warning deci-

sions, the coverage provided by the current baseline is

very good.

To estimate the benefit provided by flash flood

warnings independent of radar coverage, we also ran

the model on a CONUS with no flash flood warnings

and with 100% warnings (Tables 4 and 5). The results

indicate that over $390Myr21 benefit is realized by the

current flash flood warning system compared to a world

without warnings, and the remaining benefit pool for

warnings is about $69Myr21—this corresponds to the

hypothetical situation of having 100% warning on flash

floods. (The impact of lead time and false alarm ratio

improvements could not be modeled because these

variables were not statistically significant predictors of

casualty rate.) This value also corresponds to the upper-

bound benefit for radars, since, in principle, improve-

ments to radar QPE through noncoverage aspects such

as rapid scanning and product algorithm enhancements

could help push flash flood POD toward 100%.

Because the average fraction of injured that are hos-

pitalized (h 5 0.43) used in the model was based on a

small number of cases, we tested themodel sensitivity by

changing this parameter to 0.25 and 0.75. For h 5 0.25,

the magnitude of the benefits in Tables 4 and 5 de-

creased by 2%, and for h 5 0.75, the magnitude of the

benefits increased by 4%. Thus, the model appears to be

fairly stable with respect to even large variances in this

parameter.

Figure 9 shows geospatially the casualty cost density

difference between perfect radar coverage and the

WSR-88D network. The cost densities were mapped

from the casualty locations to the source basins of the

flash floods in order to show where improvements in

radar coverage may help with respect to flash flood ca-

sualty reduction. Impacts from both the flash flood oc-

currence rate (Fig. 8) and modeled warning probability

(Fig. 7) are discernible in Fig. 9. For example, the

mountainous region west of Charlottesville, Virginia,

has both fairly high flash flood occurrence rate and low

modeled warning probability (corresponding to a radar

coverage gap noticeable in the Fig. 2, 5000-ft AGL plot),

resulting in a larger benefit pool. The poor low-altitude

radar coverage in the mountain west, however, does not

generally lead to a greater benefit pool, except in areas

with more frequent occurrence of flash floods (and

perhaps population).

TABLE 5. Annual CONUS flash flood casualty cost estimates.

Scenario Fatal ($M) Injured (hospitalized) ($M) Injured (treated and released) ($M) Total ($M) Delta baseline ($M)

WSR-88D 609.9 44.8 10.5 665.2 —

No radar coverage 899.8 66.1 15.5 981.3 316.1

Perfect coverage 597.7 43.9 10.3 651.9 213.3

0% warned 969.6 71.2 16.7 1057.4 392.2

100% warned 547.0 40.2 9.4 596.5 268.7

FIG. 9. Modeled annual flash flood casualty cost density difference between the current

WSR-88D network and perfect WSR-88D-like coverage.
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There are, of course, a number of cautionary notes

regarding this analysis. First is the incomplete nature of

the flash flood data. For example, the NWS flood event

data are based on reports by human observers, and

floods that occurred in remote locations or had no im-

pact on people may have been missed. Fortunately, the

benefits are accumulated in areas with people, so biases

in the event data may not greatly affect the modeled

benefit estimates. Rapid housing development in remote

areas prone to flooding, however, might lead to slight

localized underestimates of future benefits.

Second, there are factors that influence the flash flood

warning decision process not accounted for in our

model, such as the skill of individual forecasters, pro-

cedural heterogeneity across regional forecast centers,

evolution of the QPE and FFG products, FFG errors,

density of rain gauge network, availability of other data

sources, storm type, and basin hydrological features.

Also, temporal evolution of a basin, such as when a fire

decimates vegetation, can greatly affect runoff response

time. However, as the statistical stability of the radar-

coverage-to-warning-performance relationship over the

pre- and post-dual-polarization eras attests, variances

due to these other factors appear to largely get averaged

out over the large number of data points ingested in the

analysis.

The circumstances of flash flood casualties are very

complex and difficult to model statistically. Many flash

flood fatalities in the United States occur while the vic-

tims are away from their residences, which cannot be

precisely characterized with population data. It is diffi-

cult to capture factors like real-time access to flash flood

warnings and likelihood of response (Knocke and

Kolivras 2007; Parker et al. 2009; Morss et al. 2016),

while data on event characteristics such as flow speed

and depth are not universally available. In our casualty

regression analysis, we considered potential causative

factors with data available geospatially on a national

basis and discarded those that were not statistically

reliable predictors. The resulting regression model is

necessarily a simple one, but, again, the large number

of data points used in the analysis provides a high level

of statistical robustness that would not be available in a

more detailed case study.

4. Summary discussion

We constructed a geospatial model for computing

meteorological radar network benefits for flash flood

casualty reduction. We showed unambiguously that

better radar coverage of the causative rainfall leads to

improved flash flood warning statistics. We also estab-

lished that the casualty rate decreases by 44% when a

flash flood warning is present. Combining these two ef-

fects, the model was able to generate benefit estimates

on a high-resolution spatial grid. Themodel can work on

an arbitrary radar network configuration.

Our model showed that today’s WSR-88D network

provides over $300Myr21 in flash flood casualty reduc-

tion. There is a modest remaining benefit pool of

$13Myr21 for coverage improvements, which is indica-

tive of the effective coverage provided for this purpose

by the current weather radar network. Inclusive of all

aspects of flash flood warning POD improvements, in-

cluding better radar QPE, the maximum benefit pool is

$69Myr21.

A radar benefit model could not be established for

non–flash floods, since our analysis did not yield a

meaningful relationship between radar coverage and

warning performance. This negative result was not

entirely a surprise, given that warning decisions for

longer-term events must be based primarily on model

forecast data, and the importance of QPE to the flood

forecasting process diminishes with increasing time ho-

rizon as stream gauge data and QPF become more

relevant.

Potential benefits from flash flood property damage

reduction could be worth investigating, although loss

mitigation options may be limited in this scenario

(relocating vehicles, moving valuables from basements

and first floors to upper levels, etc.). Also, damage re-

duction is expected to be less for shorter-lead-time

flash flood events relative to longer-lead-time non–

flash flood events (Day 1970). A preliminary analysis

using population as a proxy for property value did not

yield any statistically meaningful relationship between

flash flood warning performance and property damage.

For a proper study, geospatial data of real estate

property type and value as well as vehicle count would

likely be needed.
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